
Mitteilungen der VÖB 70 (2017) Nr. 2: Metadata – Metadaten 225

 IMPLEMENTATION OF A CLASSIFICATION SERVER TO SUP-
PORT METADATA ORGANIZATION FOR LONG TERM PRESERVA-
TION SYSTEMS

by Sándor Kopácsi†, Rastislav Hudak, Raman Ganguly

Abstract: In this paper we describe the implementation of a classification server that
helps in metadata organization for a long term reservation system of digital objects.
After a short introduction to classifications and knowledge organization, the require-
ments of the system to be implemented are summarized. Some Simple Knowledge Or-
ganization System (SKOS) management tools we have evaluated are briefly presented.
These include Skosmos, the solution we have selected for implementation. Skosmos is
an open source, web-based SKOS browser based on the Jena Fuseki SPARQL server.
We present the main steps of the installation of the applied tools and some potential
problems with the classifications used, as well as possible solutions.

Keywords: long term preservation; metadata; classification; SKOS; Skosmos; Jena Fuseki

IMPLEMENTIERUNG EINES KLASSIFIKATIONSSERVERS FÜR ME-
TADATENORGANISATION FÜR LANGZEITARCHIVIERUNGSSY-
STEME

Zusammenfassung: In diesem Artikel beschreiben wir die Implementierung eines
Klassifikationsservers für Metadatenorganisation in einem Langzeitarchivierungssy-
stem für digitale Objekte. Nach einer kurzen Einführung in Klassifikationen und Wis-
sensorganisationen stellen wir die Anforderungen an das zu implementierende System
vor. Wir beschreiben sämtliche Simple Knowledge Organization System (SKOS) Ma-
nagement Tools, die wir untersucht haben, darunter auch Skosmos, die Lösung, die
wir für die Implementierung gewählt haben. Skosmos ist ein open source, webbasier-
ter SKOS Browser, basierend auf dem Jena Fuseki SPARQL Server. Wir diskutieren
einige entscheidende Schritte während der Installation der ausgewählten Tools und
präsentieren sowohl die potentiell auftretenden Probleme mit den verwendeten Klas-
sifikationen als auch mögliche Lösungen.

Schlüsselwörter: Langzeitarchivierung; Metadaten; Klassifikation; SKOS; Skosmos;
Jena Fuseki

Dieses Werk ist lizenziert unter einer
Creative-Commons-Lizenz Namensnennung 4.0 International

https://creativecommons.org/licenses/by/4.0/

Mitteilungen der VÖB 70 (2017) Nr. 2: Metadata – Metadaten226

Contents
1.	 Introduction
2.	 Classification and knowledge organization systems
3.	 Application of the classification server
4.	 Requirements
5.	 Tool selection for implementation
6.	 Implementation
7.	 Available services and usage
8.	 Connection to the preservation system

1. Introduction

Long term preservation of digital objects is a key issue for libraries and
research institutes today, because they need to ensure that the digital con-
tent of books, documents, pictures, research data, etc. remains accessible
and usable within a required period of time [1]. Digital preservation in-
cludes the activities of planning, resource allocation, and application of
preservation methods and technologies [2].

When we store digital objects in an archiving system, it is funda-
mental to assign well-defined metadata to make the discoverability of
the object easier. Metadata can provide title, authors, keywords, and
other important information about a document. Metadata can also
store technical details on format and structure, ownership and access
rights information, as well as the history of preservation activities on the
digital object.

When the data provider of the digital object is allowed to add non-
standardized values as metadata, it can be challenging to tell the appro-
priate keywords, a process that sometimes requires guessing. If we want
to avoid ambiguities, misspellings, etc. it is better to select terms from
pre-defined controlled vocabularies.

Controlled vocabularies, or rather classifications in multiple topics,
are available in several data sources among which we can select. If we
want to provide all relevant classifications inside our archiving system
and make them available to users so they can select terms during up-
load or search, a classification server that handles vocabularies and
classifications relevant to us seems to be a favourable solution. It is
beneficial because we can then ensure that the required classifications
are always available within a defined access time in our Classification
server.

Mitteilungen der VÖB 70 (2017) Nr. 2: Metadata – Metadaten 227

Classification servers store information according to classification or
knowledge organization schemas, usually in the structure of Resource De-
scription Framework (RDF) and/or as Simple Knowledge Organization Sy-
stem (SKOS), and should be organized as Linked Data.

2. Classification and knowledge organization systems

2.1. Classification

A classification is a form of categorization that collects objects or items
according to their subjects usually arranged in a hierarchical tree struc-
ture. This knowledge organization technique can take many different
forms, such as controlled vocabularies, taxonomies, thesauri, ontologies,
and some others (see Fig. 1). There are different interpretations (e.g. [3],
[4], [5]) of these types of classifications, from which we can establish the
following explanations.

A controlled vocabulary is a closed list of words or terms that have
been included explicitly, and that can be used for classification. It is con-
trolled because only terms from the list may be used, and because there is
control over who can add terms to the list, when and how.

A taxonomy is a collection of controlled vocabulary terms organized
into a hierarchical structure by applying parent-child (broader/narrower)
relationships. Each term in taxonomies is in one or more relationships
(e.g. whole/part, type/instance) to other terms in the taxonomy.

A thesaurus is a more structured, much richer taxonomy, that uses as-
sociative relationships (like "related term") in addition to parent-child re-
lationships.

An ontology is a more complex type of thesaurus usually expressed
in an ontology representation language that consists of a set of types,
properties and relationship types. In an ontology, there are various custo-
mized relationship pairs that contain specific meaning, such as "owns"
and its reciprocal "is owned by", instead of simple "related term" relati-
onships.

Fig. 1 shows the above mentioned concepts in order of complexity.
Controlled Vocabulary is the least complex classification; all other cate-
gories are a subset of it. For example Taxonomy is a subset of Controlled
Vocabulary with the additional requirement of an hierarchical structure.
We can say that every Taxonomy is a Controlled Vocabulary, but not every
Controlled Vocabulary is a Taxonomy, and so forth.

Mitteilungen der VÖB 70 (2017) Nr. 2: Metadata – Metadaten228

Fig. 1: Categories of classification

2.2. Knowledge organization systems and Linked Data

Classifications can be considered as a collection of organized knowledge,
therefore the technical background of classification is based on Knowledge
Organization Systems (KOS). In knowledge organization systems we usu-
ally store knowledge in form of triplets, such as object-predicate-subject,
or object-attribute-value.

Classifications can be represented in Simple Knowledge Organization
Systems (SKOS1) as a Resource Description Framework (RDF) vocabulary.
The Simple Knowledge Organization System is a W3C recommendation
designed for the representation of thesauri, classification schemes, taxo-
nomies, subject-heading systems, or any other type of structured and con-
trolled vocabulary.

Using RDF allows knowledge organization systems to be used in distri-
buted, decentralized metadata applications. "Decentralized metadata is
becoming a typical scenario, where service providers want to add value to
metadata harvested from multiple sources." [6]

Each SKOS concept is defined as an RDF resource, and each concept
can have RDF properties attached, which include one or more preferred
terms, alternative terms or synonyms, and language specific definitions
and notes. Established semantic relationships are expressed in SKOS and
intended to emphasize concepts rather than terms/labels. [7]

Mitteilungen der VÖB 70 (2017) Nr. 2: Metadata – Metadaten 229

A special query language, called SPARQL (a recursive acronym for
SPARQL Protocol and RDF Query Language)2, can be used to query and
update data sources stored as RDF. SPARQL contains capabilities for que-
rying required and optional graph patterns along with their conjunctions
and disjunctions. SPARQL also supports extensible value testing and cons-
training queries by source RDF graph. [8]

SKOS – as a modern, well established standard – can (potential-
ly) support formal alignments and hierarchical grouping of concepts
using different SKOS relations (e.g. skos:exactMatch, skos:closeMatch,
skos:narrower, skos:broader, skos:related), translation of concept labels,
and URI-based mapping to similar concepts in other KOS.

3. Application of the classification server

The Classification server that we have integrated from available tools is an
independent component of Phaidra3, the Digital Asset Management Plat-
form with long-term archiving functionality developed by the University of
Vienna.

Phaidra is an acronym for Permanent Hosting, Archiving and Indexing of
Digital Resources and Assets. Phaidra is implemented at several local Aus-
trian institutions and also internationally, including universities in Serbia,
Montenegro and Italy. Phaidra provides academic, research and manage-
ment staff the possibility to archive digital objects for an unlimited period
of time, to permanently secure them, to supplement them with metadata,
as well as to archive objects - and to provide world-wide access to them.

We are going to apply the Classification server both during the ingesti-
on and in the search phase of Phaidra usage. During the ingestion phase
the Phaidra user uploads new items to the archiving system and can assign
metadata to them from controlled vocabularies. In the search phase the
user looks for objects that might have been previously supplied with classi-
fication terms from existing vocabularies. We also need the Classification
server for resolving the classification terms that were saved together with
the objects, when displaying them.

4. Requirements of the classification server

The first step in development was to establish requirements of the Classi-
fication server that supports different classifications and controlled voca-

Mitteilungen der VÖB 70 (2017) Nr. 2: Metadata – Metadaten230

bularies for Phaidra. The requirements were grouped into the categories of
General Requirements and Technical Requirements. At this level of deve-
lopment we have not explicitly distinguished functional and non-functio-
nal requirements, but there are constraints that are either more functional
or more of an administrative feature of the system among the General Re-
quirements and Technical Requirements. Each requirement was prioritized
between 1 and 3, where 1 meant the highest priority (= most important),
while 3 meant the lowest priority (= least important).

4.1. General requirements

The General Requirements (see Table 1) are related to the main goals of
the system that we were going to achieve by the implementation of the
Classification server. Some of them (GR-1, GR-2, GR-3, GR-4) are func-
tional requirements, but others (GR-5 and GR-7) are rather administrative
issues.

Requirement

The Classification server

Priority
1: highest
3: lowest

GR-1 should resolve the URIs of the different terms. 3

GR-2 should support multiple languages . 2

GR-3 should support multiple versions of classifications. 1

GR-4 should return the list of sub terms (narrower concepts). 1

GR-5 should be Phaidra independent. 1

GR-6 should have no assumptions about content, which me-
ans that the set of classifications can differ on instances
that are locally managed.

2

GR-7 does not require too much development effort and
have low costs.

2

Tab. 1: General requirements

Mitteilungen der VÖB 70 (2017) Nr. 2: Metadata – Metadaten 231

4.2. Technical requirements

All the Technical Requirements (see Table 2) can be considered functional
requirements, and some of them (TR-1, TR-2, TR-3) are related to the
input and output format of the system. TR-4 was a rather important re-
quirement, because we definitely wanted our system to provide a SPARQL
endpoint through which other systems can access our Classification server
by using SPARQL queries4.

Requirement

The Classification server

Priority
1: highest
3: lowest

TR-1 should return the terms in multiple formats (such as
XML, JSON, RDF, TTL).

2

TR-2 should support standard import formats for vocabula-
ries (e.g. SKOS/RDF, TTL, N-Triples).

1

TR-3 should support Linked Data (in SKOS/RDF/XML for-
mats).

1

TR-4 should provide a SPARQL endpoint. 1

TR-5 should provide a comprehensive search needed for
Phaidra.

1

TR-6 should also support classifications/vocabularies that
do not yet support linked data (do not have URIs).

2

TR-7 should be able to use external terminology services, e.g.
dewey.info, so that we do not necessarily have to im-
port it locally.

3

Tab. 2: Technical requirements

Mitteilungen der VÖB 70 (2017) Nr. 2: Metadata – Metadaten232

5. Tool selection for the implementation

5.1. Evaluation of available tools

Before implementation we tested and evaluated some popular tools (Th-
Manager5, TemaTres6, SKOS Shuttle7, PoolParty8, Protégé9, Skosmos10 for
managing classifications. We also collected information about other tools
(like HIVE11, iQvoc12, CATCH13), but they did not fit our requirements,
thus they were not investigated further.

All of the evaluated tools had advantages and disadvantages, but the
most important selection criterion for us was to find an open source tool
that can provide a SPARQL Endpoint. A comparison of the evaluated tools
can be seen in Table 3 where we included the open source products only.
Another important selection criterion was to find a tool that is based on
the stable and widespread Apache Jena technology and which can be ac-
cessed via REST API14.

Imple-
mented in

Input Multi-
lingual

Backend SPARQL
 End-
point

REST
API

Last
update

ThManager Apache
Jena

SKOS
RDF

yes SPARQL available N/A 2006

TemaTres N/A SKOS,
tabula-
ted text

yes MySQL available available 2017

Protégé Java
Swing

OWL,
Excel,
CSV

yes SPARQL available N/A 2016

Skosmos Apache
Jena

SKOS
Core

yes SPARQL available available 2017

Tab. 3: Comparison of the evaluated tools

Based on the above criteria, Skosmos with Jena Fuseki seemed to be the
best solution, which is why we selected it for our Classification server im-
plementation.

Mitteilungen der VÖB 70 (2017) Nr. 2: Metadata – Metadaten 233

5.2. Skosmos with Jena Fuseki

Skosmos15, developed by the National Library of Finland, is an open sour-
ce web application for browsing controlled vocabularies. Skosmos was
built on the basis of prior development (ONKI16, ONKI Light17) for develo-
ping vocabulary publishing tools in the FinnONTO (2003–2012) research
initiative from the Semantic Computing Research Group.

Skosmos is a web-based tool for accessing controlled vocabularies used
by indexers describing documents, and by users searching for suitable key-
words. Vocabularies are accessed via SPARQL endpoints containing SKOS
vocabularies.

Skosmos provides a multilingual user interface for browsing vocabula-
ries. The languages currently supported in the user interface are English,
Finnish, German, Norwegian, and Swedish. However, vocabularies in any
language can be searched, browsed and visualized, as long as proper lan-
guage tags for labels and documentation properties have been provided
in the data.

Skosmos provides an easy to use REST API for read only access to the
vocabulary data. The return format is mostly JSON-LD, but some methods
return RDF/XML, Turtle, RDF/JSON with the appropriate MIME type. The-
se methods can be used to publish the vocabulary data as Linked Data.
The API can also be used to integrate vocabularies into third party soft-
ware. For example, the search method can be used to provide autocomple-
te support and the lookup method can be used to convert term references
to concept URIs. [9]

The developers of Skosmos recommend using the Jena Fuseki18 SPARQL
server and triple store with the Jena text index for large vocabularies. The
Jena text extension can be used for faster text search. In addition to using
a text index, caching of requests to the SPARQL endpoint with a standard
HTTP proxy cache such as Varnish19 can be used to achieve better perfor-
mance for repeated queries, such as those used to generate index view.

6. Implementation of the Classification server

The classification server was implemented using Skosmos as a frontend
for handling SKOS vocabularies, and Jena Fuseki as a SPARQL RDF store
containing SKOS vocabulary data (see Fig. 2). The input of the system and
the possible connections to the users or directly to Phaidra are discussed
in the sections below.

Mitteilungen der VÖB 70 (2017) Nr. 2: Metadata – Metadaten234

Alternatively, instead of Fuseki, we could use other SPARQL 1.1 com-
pliant RDF stores, but the performance of other tools did not seem to be
sufficient with large vocabularies since there is no text index support for
generic SPARQL 1.1.

Fig. 2: System architecture (original source: [10])

6.1. Installation of Skosmos and Jena Fuseki

Skosmos and Fuseki require Apache and PHP running on the server. We
have installed them on a Windows 7 environment (Professional 64 bit,
Service Pack 1, Intel Core i7-56000 CPU, 2.6 GHz, 16 GB RAM) using Java
1.8 (jre1.8.0_40), with XAMPP (xampp-win32-1-8-3-4-VC11), as well as
on a CENTOS 6.5 and on a Ubuntu 16.04 virtual machine (Intel Xeon CPU
E5-2670 0 @ 2.60GHz).

A detailed installation guide can be found on GitHub20 for the Linux
version, but there are some deviations on the Windows version, as well as
some important issues that are worth highlighting.

6.2. Configuration of Skosmos and Fuseki

Configuration of Skosmos. Skosmos can basically be configured in two
files, config.inc for setting some general parameters, and vocabularies.ttl
to configure the vocabularies shown in Skosmos.

Mitteilungen der VÖB 70 (2017) Nr. 2: Metadata – Metadaten 235

In config.inc one can set the name of the vocabularies file, change the
timeout settings, set interface languages, set the default SPARQL end-
point, and set the SPARQL dialect if the Jena text index is needed.

Vocabularies are managed in the RDF store accessed by Skosmos via
SPARQL. The available vocabularies are configured in the vocabularies.ttl
file that is an RDF file in Turtle syntax.

Each vocabulary is expressed as a skosmos:Vocabulary instance (sub-
class of void:Dataset). The local name of the instance determines the voca-
bulary identifier used within Skosmos (e.g. as part of URLs). The vocabu-
lary instance has the following properties: title of vocabulary (in different
languages), the URI namespace for vocabulary objects, language(s) and
the default language that the vocabulary supports, the URI of the SPARQL
endpoint containing the vocabulary, and the name of the graph within the
SPARQL endpoint containing the data of the individual vocabulary.

In addition to vocabularies, the vocabularies.ttl file also contains a
classification for the vocabularies expressed as SKOS. The categorization
is used to group the vocabularies shown in the front page of Skosmos. You
can also set the content of the About page in about.inc, and add additi-
onal boxes to the left and to the right of the front page in left.inc and in
right.inc.

Configuration of Fuseki. Fuseki stores data in files. It is also possible
to configure Fuseki for in-memory use only, but with a large dataset, this
requires a lot of memory. The in-memory use of Fuseki is usually faster.

The Jena text enabled configuration file specifies the directories where
Fuseki stores its data. The default locations are /tmp/tdb and /tmp/lu-
cene. To flush the data from Fuseki, simply clear or remove these directo-
ries.

The Jena text extension can be used for faster text search, and Skosmos
needs to have a text index to work with vocabularies of medium to large
size. The limit is a few thousand concepts, depending on the performance
of the SPARQL endpoint and on how much latency is acceptable for users.

If Fuseki is started in the TDB with ./fuseki-server --config config.ttl it
runs using text indexing. To use Fuseki in TDB, the TDB location for Jena
text index should be set, and the Lucene text directory in config.ttl. If Fuse-
ki is run in memory with ./fuseki-server --update --mem /ds, then there is
no text indexing by default.

It is also possible to use in-memory TDB and text indexing, but it re-
quires a Fuseki configuration file (config.ttl) with special "file names" that
are actually in-memory (for TDB: tdb:location "--mem--"; and for Jena
text: text:directory "mem").

Mitteilungen der VÖB 70 (2017) Nr. 2: Metadata – Metadaten236

Timeout settings. If there is more data than Skosmos is able to handle,
some queries can take a very long time. The slow queries are usually the
statistical queries (number of concepts per type, number of labels per lan-
guage) as well as the alphabetical index.

Short execution timeout for PHP scripts can trigger Runtime IO Excep-
tions. To change the timeout values, check PHP and Apache’s time out set-
tings (e.g. in php.ini the max_execution_time). It is highly recommended
to find this setting and change it to a higher value (say to 5 or 10 minutes).

Skosmos also has a HTTP_TIMEOUT setting in config.inc, that should
only be used for external URI requests, not for regular SPARQL queries,
because there might be unknown side-effects. The EasyRdf HTTP client
has a default timeout of 10 seconds. It is also recommended to change
this value.

It is also recommended that users change the timeout value of their
browsers from which they are planning to access Skosmos on the client-side.
This is possible in Firefox and Internet Explorer, but not in Google Chrome.

6.3. Getting and setting vocabularies

The basic usage of our Classification server is to store the classifications
locally (if its access time is acceptable), and we also provide the links to
the remote SPARQL endpoints of the classifications if they are available.

If certain vocabularies are planned for local use, they have to be in
SKOS format, and should be uploaded to the local SPARQL server, that is
to Jena Fuseki.

Downloading and converting vocabularies. Vocabularies can be down-
loaded from the original dataset provider (e.g. from Getty, COAR, Statistics
Austria, etc.), or in case of a small dataset, they can be created manually.
The vocabularies need to be expressed using SKOS Core representation in
order to publish them via Skosmos directly, but SKOS-XL representations
or even files in Excel can also be easily converted to SKOS Core. For the
SKOS-XL to SKOS Core conversion we use the owlart converter21. SKOS-XL
labels can be converted to SKOS Core labels by executing SPARQL Update
queries as well. If the classification is available in Excel or CVS, then VBA
macros can convert it to SKOS Core structures. The format of the file that
is accepted by Fuseki can be rdf/xml (.rdf or .xml), turtle (.ttl) or N-Triples
(.nt). For SKOS files from external resources or files converted from other
formats it is recommended to pre-process the vocabularies using a SKOS
proofing tool, like Skosify22. This ensures, e.g., that the broader/narrower
relations work in both directions, and that related relationships are sym-

Mitteilungen der VÖB 70 (2017) Nr. 2: Metadata – Metadaten 237

metric. Skosify reports and tries to correct a lot of potential problems in
SKOS vocabularies. It can also be used to convert non-SKOS RDF data
into SKOS. An online version of the Skosify tool is also available, where the
default options can be used after selecting the vocabulary to be checked.

Uploading files to Fuseki. If Skosmos is used for accessing classifica-
tions in the local SPARQL triple store, then the datasets have to be up-
loaded to Fuseki. First, it has to be considered if Fuseki will run either in
memory or in a predefined folder, usually called TDB. If Fuseki runs in
memory, then all uploads and updates (if allowed) will be temporary. If
Fuseki runs in TDB, then uploads and updates will remain there even if we
exit Fuseki and restart it.

In a SPARQL triple store there is always a default (unnamed) graph,
and there can also be multiple named graphs. In other words, there is
only one default graph (with no name), but there can be any number of
named graphs in a SPARQL endpoint/dataset. The URI namespaces can
be used as graph names (e.g. http://vocab.getty.edu/tgn/ would store
Getty’s TGN data).

The datasets can be uploaded to Fuseki online, when Fuseki is running,
or offline, when Fuseki is not running. To upload the dataset online the
control panel of the web interface of Fuseki or command line instructions
can be used. For offline upload the datasets can be directly loaded to TDB.

On uploading datasets online to Fuseki through its control panel, one
can set the Graph to "default" or to a graph name provided. If a graph
name is used, it should be the name of its dataset in skosmos:sparqlGraph
(e.g. http://vocab.getty.edu/tgn/) in vocabularies.ttl.

The Fuseki file upload handling is not very good at processing large
files. It loads the dataset into memory first, and to the on-disk TDB data-
base (and also the Lucene/Jena text index) only afterwards. It can run out
of memory on the first step ("OutOfMemoryError: java heap space" is a
typical error message when this happens). If we give several GB of memory
to Fuseki (for example by setting JVM heap to 8 GB: export JVM_ARGS=-
Xmx8000M) it should be possible to upload large (several hundreds of
MB) files, although it might take a while and it is recommended to restart
Fuseki afterwards to free some memory.

6.4. Some examples and problems of adding individual vocabularies

In this section we are going to describe some examples for individual vo-
cabularies that we are using in our classification server that show typical
problems and solutions.

http://vocab.getty.edu/tgn/

Mitteilungen der VÖB 70 (2017) Nr. 2: Metadata – Metadaten238

Getty vocabularies23 contain structured terminology for art and other
cultural, archival and bibliographic materials. They provide authoritative
information for cataloguers and researchers, and can be used to enhance
access to databases and web sites.

Getty has its own SPARQL endpoint, but it is not responding correctly
to our Classification server. There seems to be some incompatibility bet-
ween Skosmos (in practice, the EasyRdf library which is used to perform
SPARQL queries) and the Getty SPARQL endpoint.

Even if we could access the Getty SPARQL endpoint, it would most
likely be extremely slow to use with Skosmos, since it does not have a text
index that Skosmos could use. The lack of text index prevents any actual
use of Skosmos with the Getty endpoint.

Therefore, we tried to upload Getty vocabularies to our own local
Fuseki SPARQL endpoint with the Jena text index. But unfortunately
Getty vocabularies do not work well in Skosmos due to their very large
size.

There are two sets of each Getty vocabulary, the „explicit“ set and the
„full“ set (Total Exports). With the „explicit“ set, which is smaller, we
had to configure Fuseki to use inference so that the data store can infer
the missing triples. With the full set this is not needed, but the data set
is much larger so we had difficulties loading it. We could finally upload
the full set of Getty's vocabularies using the tdbloader utility of Jena
Fuseki.

The downloaded export file of the full set includes all statements (ex-
plicit and inferred) of all independent entities. It is a concatenation of
the Per-Entity Exports in N-Triples format. Because it includes all required
Inference, it can be loaded to any repository (even one without RDFS re-
asoning).

We had to download the External Ontologies (SKOS, SKOS-XL, ISO
25964), from http://vocab.getty.edu/doc/#External_Ontologies to get
descriptions of properties, associative relations, etc. We downloaded the
GVP Ontology from http://vocab.getty.edu/ontology.rdf. Finally we loa-
ded the full.zip export files (.aat, .tgn and .ulan) from http://vocab.getty.
edu/dataset/. This way we were able to make some Getty vocabularies
available in our Classification server, but due to their huge size, they are
rather slow.

COAR Resource Type Vocabulary24 defines concepts to identify the
genre of a resource. Such resources, like publications, research data, au-
dio and video objects, are typically deposited in institutional and subject
repositories or published in journals.

http://vocab.getty.edu/doc/#External_Ontologies
http://vocab.getty.edu/ontology.rdf
http://vocab.getty.edu/dataset/
http://vocab.getty.edu/dataset/

Mitteilungen der VÖB 70 (2017) Nr. 2: Metadata – Metadaten 239

The main problem with COAR is that it only represents labels using
SKOS XL properties. Skosmos currently does not support SKOS-XL. Unfor-
tunately, the remote endpoint of COAR25 cannot be used either, because
the COAR endpoint data currently is not in SKOS Core, but in SKOS-XL.
Since we wanted to use COAR data in our Classification server, we had to
convert it to SKOS Core labels using owlart26.

ÖFOS27 is the Austrian version of the Field of Science and Technology
Classification (FOS 200728), maintained by Statistik Austria. The Austri-
an classification scheme for branches of science (1-character and 2-cha-
racter) is a further development modified for Austrian data.

The ÖFOS can be downloaded in PDF and CSV format, but no SKOS
structure (in RDF/XML, Turtle or N-Triples) or Linked Open Data repre-
sentation through a SPARQL Endpoint is available.

Since we received it directly from Statistik Austria29 in Excel format, the
simplest way of converting it to SKOS was using VBA macros. These ma-
cros simply read the content of the Excel file, extend it with the appropri-
ate RDF and SKOS labels, and write it to the desired RDF/XML or turtle
format.

7. Available services and usage of the classification server

Currently our Classification server makes four general on-line classi-
fications from external triple stores (AGROVOC, Eurovoc, STW, UN-
ESCO), some other general local classifications (e.g. COAR Resource
Type Vocabulary, GND, ÖFOS, etc.) and two local, Phaidra specific
classifications available. The local classifications have been uploaded
to our local triple store in order to make them accessible from Skos-
mos.

The Classification server is available at http://vocab.phaidra.org
from any web browser. The operation of the server is quite simple: on
the opening page of Skosmos (see Fig. 3) the user simply has to click
on one of the classifications, and then the selected classification will be
opened. First it shows the vocabulary information, like Title, Creator,
Date Issued, Rights, etc. Alphabetical and hierarchical view is availa-
ble for browsing the classifications. Depending on the configuration in
some cases the Change History of the vocabulary or the Group of Con-
cepts can also be seen. The user can search for specific contents either
in the remote or local triple store servers or simply in a selected classi-
fication.

http://vocab.phaidra.org

Mitteilungen der VÖB 70 (2017) Nr. 2: Metadata – Metadaten240

Fig. 3: Opening page of the classification server

8. Connecting the preservation system to the classification server

Our Preservation System Phaidra requires the Classification server when
the user ingests new items and wants to add metadata from a controlled
vocabulary. Another scenario is when the user searches for some docu-
ments classified with terms from a controlled vocabulary and wants to
display or resolve them.

The connection between Phaidra and the Classification server was re-
alized using the REST API of Skosmos and/or the REST-style SPARQL
Queries of Jena Fuseki (see Fig. 1). These are read-only interfaces over
HTTP to the data stored in the Classification server, where requests can
be built in the URL. The returned data is in UTF-8 encoded JSON-LD
format.

Skosmos provides a REST-style API and Linked Data access to the un-
derlying vocabulary data. The REST URLs must begin with the /rest/v1
prefix. Most of the methods return the data as UTF-8 encoded JSON-LD,
served using the application/json MIME type. The data consists of a sin-
gle JSON object which includes JSON-LD context information (in the @
context field) and one or more fields which contain the actual data.

Jena Fuseki provides REST-style SPARQL HTTP Update, SPARQL Que-
ry, and SPARQL Update using the SPARQL protocol over HTTP. Fuseki
implements W3C's SPARQL 1.1 Query, Update, Protocol and Graph Store
HTTP Protocol.

Mitteilungen der VÖB 70 (2017) Nr. 2: Metadata – Metadaten 241

9. Conclusions and future plans

In the presented work we have successfully completed our research objec-
tives, i.e. to collect some available methods and tools for classification,
with which we could implement a Classification server. The selected tools
(Skosmos and Jena Fuseki) seemed to be a good choice, despite the diffi-
culties during implementation, as well as with the upload of certain clas-
sifications.

The classification server has fulfilled the requirements that we have set
up. The current stable version contains 14 internal and 4 external clas-
sifications at the moment. There have been hundreds of visits since the
official launch of the Classification server, and we are receiving positive
feedbacks from users continuously.

The general online external classifications (AGROVOC, Eurovoc, STW
and UNESCO) are currently using the SPARQL server of the National Li-
brary of Finland, because this server is operated by Skosmos, and this way
we can guarantee that these vocabularies work well from our Classification
server. In the near future we are going to redirect these external requests
to their original data source. The connection between the Classification
server and Phaidra is still in development at the moment.

Sándor Kopácsi†, PhD
ehem. Universität Wien, Zentraler Informatikdienst

Mag. Rastislav Hudak
Universität Wien, Zentraler Informatikdienst

E-Mail: rastislav.hudak@univie.ac.at

Dipl.-Ing. (FH) Raman Ganguly
ORCID: http://orcid.org/0000-0002-9837-0047

Universität Wien, Zentraler Informatikdienst
E-Mail: raman.ganguly@univie.ac.at

† Sándor Kopácsi regrettably died in August 2017, just before the publica-
tion of this issue.

mailto:rastislav.hudak@univie.ac.at
rastislav.hudak@univie.ac.at
mailto:raman.ganguly@univie.ac.at

Mitteilungen der VÖB 70 (2017) Nr. 2: Metadata – Metadaten242

References

1.	 Digital Preservation Coalition: Introduction: Definitions and Concepts.
Digital Preservation Handbook. York, UK. (2008). http://www.dpcon-
line.org/advice/preservationhandbook/introduction/definitions-and-
concepts

2.	 Day, Michael: The long-term preservation of Web content. Web archi-
ving, Springer, pp. 177–199. (2006).

3.	 Lars Marius Garshol: Metadata? Thesauri? Taxonomies? Topic
Maps! http://www.ontopia.net/topicmaps/materials/tm-vs-thesauri.
html#N429

4.	 Hedden Information Management: Taxonomies, Thesauri, and Con-
trolled Vocabularies. https://www.hedden-information.com/taxono-
mies.htm

5.	 The Web Graph Database: What are the differences between a vocabu-
lary, a taxonomy, a thesaurus, an ontology, and a meta-model? http://
infogrid.org/trac/wiki/Reference/PidcockArticle

6.	 W3C Semantic Web: Introduction to SKOS. https://www.
w3.org/2004/02/skos/intro

7.	 Zeng, M. L., & Chan, L.M.: Semantic Interoperability. Encyclopedia of
Library and Information Sciences 4th Edition, p. 8. (2015).

8.	 Bob DuCharme: Learning SPARQL, 2nd Edition, Querying and Upda-
ting with SPARQL 1.1, O'Reilly Media (2013).

9.	 Suominen, O., Ylikotila, H., Pessala, S., Lappalainen, M., Frosterus, M.,
Tuominen, J., Baker, T., Caracciolo, C., Retterath, A.: Publishing SKOS
vocabularies with Skosmos. Manuscript submitted for review (2015).

10. Osma Suominen: Publishing SKOS concept schemes with Skosmos.
AIMS Webinar 6th April 2016, Slide 25. (2016).

Notes

1	 https://www.w3.org/2004/02/skos/intro
2	 https://www.w3.org/TR/rdf-sparql-query/
3	 https://phaidra.univie.ac.at/
4	 https://www.w3.org/TR/rdf-sparql-query/
5	 http://thmanager.sourceforge.net/
6	 http://www.vocabularyserver.com/
7	 https://ch.semweb.ch/leistungen/thesaurus-services/en-thesauri/?ucl=en
8	 https://www.poolparty.biz/
9	 http://protege.stanford.edu/

http://www.dpconline.org/advice/preservationhandbook/introduction/definitions-and-concepts
http://www.dpconline.org/advice/preservationhandbook/introduction/definitions-and-concepts
http://www.dpconline.org/advice/preservationhandbook/introduction/definitions-and-concepts
http://www.ontopia.net/topicmaps/materials/tm-vs-thesauri.html#N429
http://www.ontopia.net/topicmaps/materials/tm-vs-thesauri.html#N429
https://www.hedden-information.com/taxonomies.htm
https://www.hedden-information.com/taxonomies.htm
http://infogrid.org/trac/wiki/Reference/PidcockArticle
http://infogrid.org/trac/wiki/Reference/PidcockArticle
https://www.w3.org/2004/02/skos/intro
https://www.w3.org/2004/02/skos/intro
https://www.w3.org/2004/02/skos/intro
https://www.w3.org/TR/rdf-sparql-query/
https://phaidra.univie.ac.at/
https://www.w3.org/TR/rdf-sparql-query/
http://thmanager.sourceforge.net/
http://www.vocabularyserver.com/
https://ch.semweb.ch/leistungen/thesaurus-services/en-thesauri/?ucl=en
https://www.poolparty.biz/
http://protege.stanford.edu/

Mitteilungen der VÖB 70 (2017) Nr. 2: Metadata – Metadaten 243

10	http://skosmos.org/
11	http://onlinelibrary.wiley.com/doi/10.1002/bult.2011.1720370407/

full
12	http://iqvoc.net/
13	http://www.cs.vu.nl/STITCH/repository/
14	Representational State Transfer that relies on stateless, client-server,

cacheable HTTP communication.
15	http://skosmos.org/
16	http://onki.fi/en/
17	http://light.onki.fi/fi/
18	https://jena.apache.org/documentation/serving_data/
19	https://varnish-cache.org/
20	https://github.com/NatLibFi/Skosmos/wiki/Installation
21	https://bitbucket.org/art-uniroma2/owlart/downloads
22	https://code.google.com/p/skosify/
23	http://vocab.getty.edu/
24	https://www.coar-repositories.org/activities/repository-interoperabili-

ty/ig-controlled-vocabularies-for-repository-assets/deliverables/
25	http://vocabularies.coar-repositories.org/sparql/repositories/coar
26	See the description of "Setting and getting vocabularies" in section 6.3.
27	http://www.statistik.at/KDBWeb/kdb.do?FAM=OESTERR&&NAV=EN

&&KDBtoken=null
28	https://www.oecd.org/science/inno/38235147.pdf
29	https://www.statistik.at/web_de/statistiken/index.html

http://skosmos.org/
http://onlinelibrary.wiley.com/doi/10.1002/bult.2011.1720370407/full
http://onlinelibrary.wiley.com/doi/10.1002/bult.2011.1720370407/full
http://iqvoc.net/
http://www.cs.vu.nl/STITCH/repository/
http://skosmos.org/
http://onki.fi/en/
http://light.onki.fi/fi/
https://jena.apache.org/documentation/serving_data/
https://varnish-cache.org/
https://github.com/NatLibFi/Skosmos/wiki/Installation
https://bitbucket.org/art-uniroma2/owlart/downloads
https://code.google.com/p/skosify/
http://vocab.getty.edu/
https://www.coar-repositories.org/activities/repository-interoperability/ig-controlled-vocabularies-for-repository-assets/deliverables/
https://www.coar-repositories.org/activities/repository-interoperability/ig-controlled-vocabularies-for-repository-assets/deliverables/
https://www.gitbook.com/book/phaidra/components/edit
http://www.statistik.at/KDBWeb/kdb.do?FAM=OESTERR&&NAV=EN&&KDBtoken=null
http://www.statistik.at/KDBWeb/kdb.do?FAM=OESTERR&&NAV=EN&&KDBtoken=null
https://www.oecd.org/science/inno/38235147.pdf
https://www.statistik.at/web_de/statistiken/index.html

