Analyzing Artificial Intelligence in Education with critical-constructive Perspectives: The Vechta Venn

Autor/innen

  • Lina Franken Universität Vechta
  • Annekathrin Bock Universität Vechta
  • Franco Rau Universität Vechta

DOI:

https://doi.org/10.21243/mi-01-25-31

Abstract

Vor dem Hintergrund unterschiedlicher disziplinärer Perspektiven auf KI in der Bildung entwickeln wir einen theoretischen Bezugsrahmen – das Vechta Venn – als analytische Linse, die sowohl zur theoretischen Reflexion als auch zur empirischen Untersuchung von KI im Bildungsbereich dient. Informiert durch Studien und disziplinäre Zugänge aus den Erziehungswissenschaften, Medienwissenschaften und Kulturwissenschaften identifizieren wir thematische Schnittmengen. Unsere Argumentation folgt einem Dreischritt. Zunächst stellen wir die wichtigsten Denkansätze für jede der drei disziplinären Perspektiven in ihren Unterschieden und ihrer Spezifik vor. Zweitens konzentrieren wir uns auf die Überschneidungen zwischen je zwei Perspektiven. Nachdem wir die jeweiligen interdisziplinären Synergien skizziert haben, kommen wir in einem dritten Schritt zum Kern des Vechta Venn. Wir verbinden alle drei Perspektiven miteinander und fragen nach der Anwendbarkeit des Venn.

Literaturhinweise

Amelang, Katrin/Bauer, Susanne (2019): Following the algorithm: How epidemiological risk-scores do accountability, in: Social studies of science, 49(4), 476–502. https://doi.org/10.1177/0306312719862049.

Aragona, Biagio/de Rosa, Rosanna (2018): Policy making at the time of Big Data: datascape, datasphere, data culture, in: Sociologia Italiana: AIS Journal of Sociology, 11, 173–185. https://doi.org/10.1485/AIS_2018/11_3434226.

Beck, Stefan (2019 [2015]): Von Praxistheorie 1.0 zu 3.0: Oder: wie analoge und digitale Praxen relationiert werden sollten, in: Berliner Blätter. Ethnographische und ethnologische Beiträge, 81, 9–27.

Bock, Annekatrin/Macgilchrist, Felicitas/Rabenstein, Kerstin/Wagener-Böck, Nadine (2024): Hoping for community in a technologically decelerated world—A critical utopian approach, in: Futures, 163, 103434, 1–10. https://doi.org/10.1016/j.futures.2024.103434.

Bond, Melissa/Khosravi, Hassan/De Laat, Maarten/Bergdahl, Nina/Negrea, Violeta/Oxley, Emily/Pham, Phuong/Chong, Sin Wang/Siemens, George (2024): A meta systematic review of artificial intelligence in higher education: A call for increased ethics, collaboration, and rigour, in: International Journal of Educational Technology in Higher Education, 21(4), 1–41. https://doi.org/10.1186/s41239-023-00436-z.

Brinda, Torsten/Brüggen, Niels/Diethelm, Ira/Knaus, Thomas/Kommer, Sven/Kopf, Christine/Missomelius, Petra/Leschke, Rainer/Tilemann, Friederike/Weich, Andreas (2020): Frankfurt-Dreieck zur Bildung in der digital vernetzten Welt. Ein interdisziplinäres Modell, in: Knaus, Thomas/Merz, Olga (Hg.): Schnittstellen und Interfaces. Digitaler Wandel in Bildungseinrichtungen, München: kopaed, 157–167.

Chiu, Thomas K. F. (2024): Future research recommendations for transforming higher education with generative AI, in: Computers and Education: Artificial Intelligence, 6, 100197, 1–9, https://doi.org/10.1016/j.caeai.2023.100197.

Christin, Angèle (2020): The Ethnographer and the Algorithm: Beyond the Black Box, in: Theory and Society, 49(5–6), 897–918.

Couldry, Nick/Mejias, Ulises A. (2019): Data Colonialism: Rethinking Big Data’s Relation to the Contemporary Subject, in: Television & New Media 20 (4), 336–349.

Crompton, Helen/Jones, Mildred V./Burke, Diane (2022): Affordances and challenges of artificial intelligence in K-12 education: A systematic review, in: Journal of Research on Technology in Education, 1–21. https://doi.org/10.1080/15391523.2022.2121344.

Crowder, Jerome W./Fortun, Mike/Besara, Rachel/Poirier, Lindsay (ed) (2020): Anthropological Data in the Digital Age, Cham, Springer International Publishing.

Decuypere, Mathias/Alirezabeigi, Samira/Grimaldi, Emiliano/Hartong, Sigrid/Kiesewetter, Svea/Landri, Paolo/Masschelein, Jan/Piattoeva, Nelli/Ratner, Helene/Simons, Maarten/Vanermen, Lanze/Broeck, Pieter Vanden (2023): Laws of Edu-Automation? Three Different Approaches to Deal with Processes of Automation and Artificial Intelligence in the Field of Education, in: Postdigital Science and Education, 5(1), 44–55. https://doi.org/10.1007/s42438-022-00360-x.

Dietzsch, Ina/Franken, Lina/Imeri, Sabine/Kinder-Kurlanda, Katharina/Sørensen, Estrid/Vepřek, Libuše Hannah (2024): Quo Vadis kulturwissenschaftliche Digital Humanities? Book of Abstracts Digital Humanities im deutschsprachigen Raum. https://zenodo.org/records/10698334.

D’Ignazio, Catherine/Klein, Lauren F. (2020): Data Feminism, Cambridge: MIT Press.

Dippel, Anne/Warnke, Martin (2025): The Depths of Illusion: Knowing Reality Through Computer Simulation, Bielefeld, transcript.

Edmond, Jennifer (2020): Introduction: Power, Practices, and the Gatekeepers of Humanistic Research in the Digital Age, in: Edmond, Jennifer (ed): Digital Technology and the Practices of Humanities Research, Cambridge, 1–20. https://doi.org/10.11647/OBP.0192.

European Commission: European Education and Culture Executive Agency (EC:EACEA) (2023): AI report by the European Digital Education Hub’s Squad on Artificial Intelligence in Education, Luxembourg: Publications Office of the European Union. Retrieved from: https://op.europa.eu/en/publication-detail/-/publication/9bb60fb1-b42a-11ee-b164-01aa75ed71a1.

European Commission: Joint Research Centre (EC: JRC) (2023): On the Futures of Technology in Education: Emerging Trends and Policy Implications, edited by I. Tuomi, R. Cachia and D. Villar-Onrubia, Luxembourg: Publications Office of the European Union. Retrieved from: https://op.europa.eu/en/publication-detail/-/publication/e4b09917-582f-11ee-9220-01aa75ed71a1.

Foucault, Michel (1982): The Subject and Power, in: Critical inquiry, 8(4), 777–795.

Foucault, Michel (1991): Governmentality [1978], in: Burchell, Graham/Gordon, Colin/Miller, Peter (eds): The Foucault Effect: Studies in Governmentality, Hempstead, 87–104.

Franken, Lina (2023a): Digitale Methoden für qualitative Forschung: Computationelle Daten und Verfahren, Münster/New York: UTB/Waxmann.

Franken, Lina (2023b): Algorithmen und Daten in kulturwissenschaftlicher Forschung: Digital Humanities in Anwendung und Reflexion, in: Zeitschrift für Empirische Kulturwissenschaft, 119 (2), 176–200, https://doi.org/10.31244/zekw/2023/02.03.

Fu, Shixuan/Gu, Huimin/Yang, Bo (2020): The affordances of AI‐enabled automatic scoring applications on learners’ continuous learning intention: An empirical study in China, in: British Journal of Educational Technology, 51(5), 1674–1692. https://doi.org/10.1111/bjet.12995.

Grimaldi, Emiliane/Ball, Stephe J. (2021): Paradoxes of freedom. An archaeological analysis of educational online platform interfaces, in: Critical Studies in Education, 62(1), 114–129. https://doi.org/10.1080/17508487.2020.1861043.

Hansen, Morten/Komljenovic, Janja (2023): Automating Learning Situations in EdTech: Techno-Commercial Logic of Assetisation, in: Postdigital Science and Education, 5(1), 100–116. https://doi.org/10.1007/s42438-022-00359-4.

Hava, Kevser/Babayiğit, Özgür (2025): Exploring the relationship between teachers’ competencies in AI-TPACK and digital proficiency, in: Education and Information Technologies, 30(3), 3491–3508. https://doi.org/10.1007/s10639-024-12939-x.

Hengartner, Thomas (2012): Technik – Kultur – Alltag: Technikforschung als Alltagskulturforschung, in: Schweizerisches Archiv für Volkskunde, 106, 117–139.

Hepp, Andreas/Jarke, Juliane/Kramp, Leif (eds) (2022): New Perspectives in Critical Data Studies: The Ambivalences of Data Power, Cham: Springer International Publishing.

Hillman, Velislava (2023): Bringing in the technological, ethical, educational and social-structural for a new education data governance, in: Learning, Media and Technology, 48(1), 122–137. https://doi.org/10.1080/17439884.2022.2052313.

Houben, Daniel/Prietl, Bianca (eds) (2018): Datengesellschaft: Einsichten in die Datafizierung des Sozialen, Bielefeld, transcript.

Introna, Lucas D. (2016): Algorithms, Governance, and Governmentality, in: Science, Technology, & Human Values, 41(1), 17–49. https://doi.org/10.1177/0162243915587360.

Jarke, Juliane/Macgilchrist, Felicitas (2021): Dashboard stories: How narratives told by predictive analytics reconfigure roles, risk and sociality in education, in: Big Data & Society, 8(1), Article 1. https://doi.org/10.1177/20539517211025561.

Keller, Reiner (2018): The sociology of knowledge approach to discourse: An introduction, in: Keller, Reiner/Hornidge, Anna-Katharina/Schünemann, Wolf J. (eds): The Sociology of Knowledge Approach to Discourse, Routledge, 16–47.

Kinder-Kurlanda, Katharina/Fahimi, Miriam (2024): Making Algorithms Fair: Ethnographic Insights from Machine Learning Interventions, in: Jarke, Juliane/Prietl, Bianca/Egbert, Simon/Boeva, Yana/Heuer, Hendrik/Arnold, Maike (eds): Algorithmic Regimes: Methods, Interactions, and Politics, Amsterdam, Amsterdam University Press, 309–330.

Kitchin, Rob (2014): The Data Revolution: Big Data, Open Data, Data Infrastructures & Their Consequences, Los Angeles/London/New Dehli: SAGE.

Kitchin, Rob (2021) Data lives: How data are made and shape our world, Bristol: Bristol University Press.

Klafki, Wolfgang (2007): Neue Studien zur Bildungstheorie und Didaktik. Zeitgemäße Allgemeinbildung und kritisch-konstruktive Didaktik, Weinheim: Beltz.

Krein, Ulrike/Schiefner-Rohs, Mandy (2021): Data in Schools: (Changing) Practices and Blind Spots at a Glance, in: Frontiers in Education, 6, 672666. https://doi.org/10.3389/feduc.2021.672666.

Lindgren, Simon (2020): Data theory: Interpretive sociology and computational methods, Cambridge/Medford: Polity.

Lindgren, Simon (2023): Introducing Critical Studies of Artificial Intelligence, in: Lindgren, Simon (ed): Handbook of Critical Studies of Artificial Intelligence, Cheltenham, UK: Edward Elgar Publishing, 1–19.

Macgilchrist, Felicitas (2021): What is ‘critical’ in critical studies of edtech? Three responses, in: Learning, Media and Technology, 46(3), Article 3. https://doi.org/10.1080/17439884.2021.1958843.

Mackenzie, Adrian (2005): The Performativity of Code: Software and Cultures of Circulation, in: Theory, Culture & Society, 22(1), 71–92, https://doi.org/10.1177/0263276405048436.

Michels, Steven (2023): Teaching (with) Artificial Intelligence: The Next Twenty Years, in: Journal of Political Science Education, 0(0), 1–12. https://doi.org/10.1080/15512169.2023.2266848.

Mishra, Punya/Koehler, Matthew J. (2006): Technological Pedagogical Content Knowledge: A Framework for Teacher Knowledge, in: Teachers College Record, 108(6), 1017–1054. https://doi.org/10.1111/j.1467-9620.2006.00684.x.

Nemorin, Selena/Vlachidis, Andreas/Ayerakwa, Hayford M./Andriotis, Panagiotis (2023): AI hyped? A horizon scan of discourse on artificial intelligence in education (AIED) and development, in: Learning, Media and Technology, 48(1), 38–51. https://doi.org/10.1080/17439884.2022.2095568.

Ng, Davy Tsz Kit/Su, Jiahong/Leung, Jac Ka Lok/Chu, Samuel Kai Wah (2023): Artificial intelligence (AI) literacy education in secondary schools: A review, in: Interactive Learning Environments, 0(0), 1–21. https://doi.org/10.1080/10494820.2023.2255228.

Perrotta, Carlo (2020): Programming the platform university: Learning analytics and predictive infrastructures in higher education, in: Research in Education, 109(1). https://doi.org/10.1177/0034523720965623.

Perrotta, Carlo/Gulson, Kalervo N./Williamson, Ben/Witzenberger, Kevin (2021): Automation, APIs and the distributed labour of platform pedagogies in Google Classroom, in: Critical Studies in Education, 62(1). https://doi.org/10.1080/17508487.2020.1855597.

Poirier, Lindsay (2021): Reading datasets: Strategies for interpreting the politics of data signification, in: Big Data & Society. https://doi.org/10.1177/20539517211029322.

Porter, Beth/Grippa, Francesca (2020): A Platform for AI-Enabled Real-Time Feedback to Promote Digital Collaboration, in: Sustainability, 12(24), Article 24. https://doi.org/10.3390/su122410243.

Schäfer, Mirko Tobias/van Es, Karin (eds) (2017): The Datafied Society: Studying Culture through Data, Amsterdam: Amsterdam University Press.

Schmid, Mirjam/Petko, Dominik (2020): ‹Technological Pedagogical Content Knowledge› als Leitmodell medienpädagogischer Kompetenz, in: MedienPädagogik: Zeitschrift für Theorie und Praxis der Medienbildung, 17, 121–40. https://doi.org/10.21240/mpaed/jb17/2020.04.28.X.

Schorb, Bernd (2021): Handlungsorientierte Medienpädagogik, in: Sander, Uwe/von Gross, Friederike/Hugger, Kai-Uwe (eds): Handbuch Medienpädagogik, Wiesbaden: Springer VS, 1–18. https://doi.org/10.1007/978-3-658-25090-4_6-1.

Selwyn, Neil (2013): Distrusting Educational Technology: Critical Questions for Changing Times, London: Routledge. https://doi.org/10.4324/9781315886350.

Selwyn, Neil (2019): Should robots replace teachers? AI and the future of education, Cambridge: Polity Press.

Selwyn, Neil/Hillman, Thomas/Eynon, Rebecca/Ferreira, Giselle/Knox, Jeremy/Macgilchrist, Felicitas/Sancho-Gil, Juana M. (2020): What’s next for Ed-Tech? Critical hopes and concerns for the 2020s, in: Learning, Media and Technology, 45(1). https://doi.org/10.1080/17439884.2020.1694945.

Sørensen, Estrid/Schank, Jan (2020): Praxeographie, in: Bauer, Susanne/Heinemann, Torsten/Lemke, Thomas (eds): Science and Technology Studies: Klassische Positionen und aktuelle Perspektiven, Berlin: Suhrkamp, 407–428.

Ständige Wissenschaftliche Kommission der Kultusministerkonferenz (SWK) (2024): Large Language Models und ihre Potenziale im Bildungssystem. Impulspapier der Ständigen Wissenschaftlichen Kommission (SWK) der Kultusministerkonferenz, Bonn: SWK. http://dx.doi.org/10.25656/01:28303.

Suchman, Lucy (2007): Human-Machine Reconfigurations: Plans and Situated Actions, 2nd edn, Cambridge/New York/Melbourne/Madrid/Cape Town/Singapore/São Paulo: Cambridge University Press.

Tulodziecki, Gerhard (2024): Medienhandeln, Medienkompetenz und Medienbildung aus handlungstheoretischer Sicht, in: Aßmann, Sandra/Grafe, Silke/Martin, Alexander/Herzig, Bardo (eds): Medien – Bildung – Forschung. Integrative und interdisziplinäre Perspektiven, Bad Heilbrunn: Julius Klinkhardt, 21–35.

Vepřek, Libuše Hannah (2024): At the Edge of AI: Human Computation Systems and Their Intraverting Relations, Bielefeld, transcript.

Vepřek, Libuše Hannah/Thanner, Sarah/Franken, Lina/Code Ethnography Collective (2023): Computercode in seinen Dimensionen ethnografisch begegnen, Kulturanthropologie Notizen, (85), 139–166.

Wagener-Böck, Nadine/Macgilchrist, Felicitas/Rabenstein, Kerstin/Bock, Annekatrin (2022): From Automation to Symmation: Ethnographic Perspectives on What Happens in Front of the Screen, in: Postdigital Science and Education. https://doi.org/10.1007/s42438-022-00350-z.

Weller, Martin (2022): Metaphors of Ed Tech, Athabasca: Athabasca University Press.

Williamson, Ben/Macgilchrist, Felicitas/Potter, John (2023): Re-examining AI, automation and datafication in education, in: Learning, Media and Technology, 48(1), 1–5. https://doi.org/10.1080/17439884.2023.2167830.

Zawacki-Richter, Olaf/Marín, Victoria I./Bond, Melissa/Gouverneur, Franziska (2019): Systematic review of research on artificial intelligence applications in higher education – Where are the educators?, in: International Journal of Educational Technology in Higher Education. 16(39), 1–27. https://doi.org/10.1186/s41239-019-0171-0.

Veröffentlicht

2025-03-26

Zitationsvorschlag

Franken, L., Bock, A., & Rau, F. (2025). Analyzing Artificial Intelligence in Education with critical-constructive Perspectives: The Vechta Venn. Medienimpulse, 63(1), 32 Seiten. https://doi.org/10.21243/mi-01-25-31

Am häufigsten gelesenen Artikel dieser/dieses Autor/in